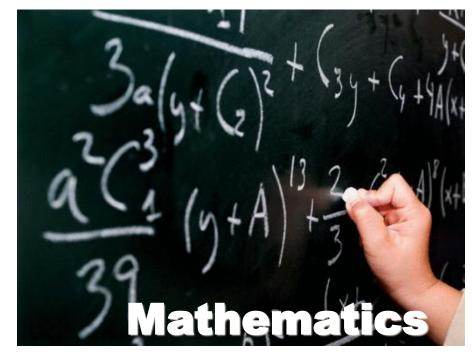
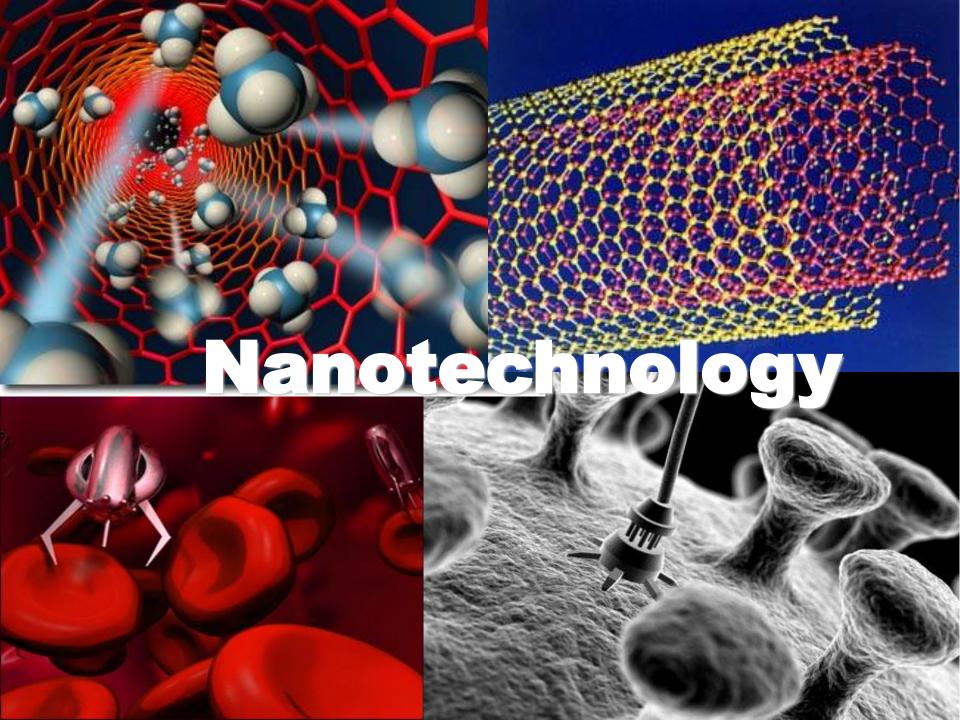
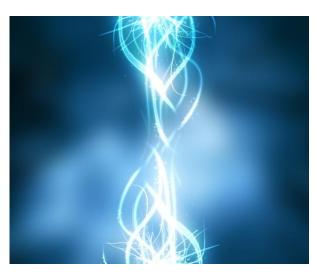

STEM Summit 2012: Idaho's Roadmap to Innovation and Success

Jan Morrison, President and CEO
Teaching Institute for Excellence in STEM
May 9, 2012



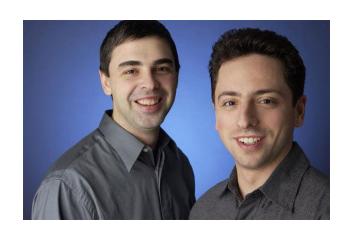




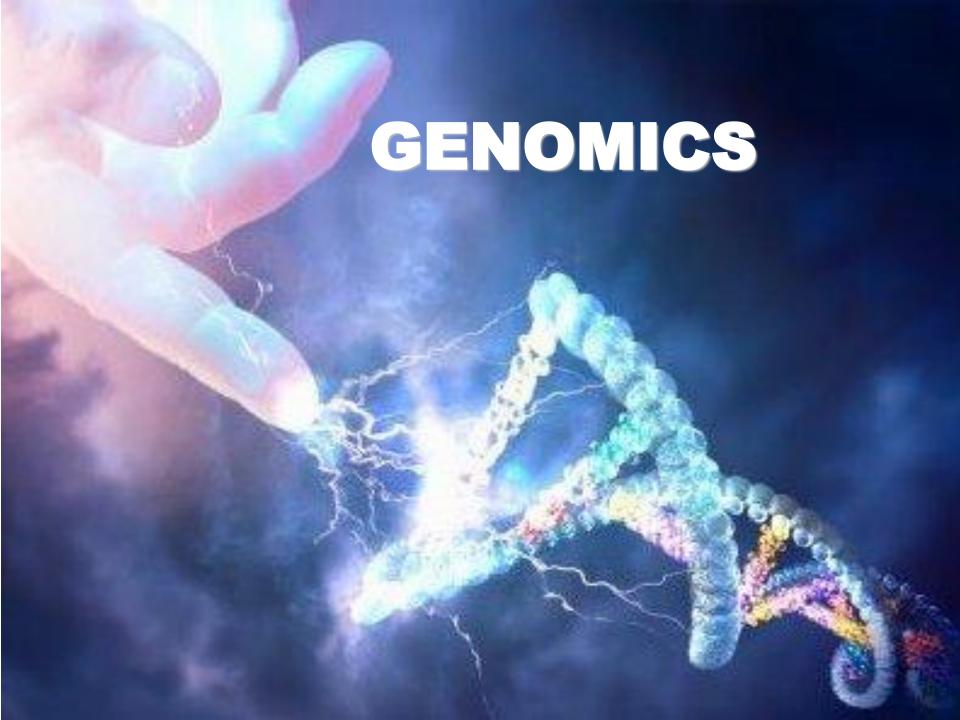
Energy

Communication

Facebook helps you connect and share with the people in your life.



Communication


facebook

Facebook helps you connect and share with the people in your life.



Applications of Genomics

STEM + INNOVATION = FUTURE

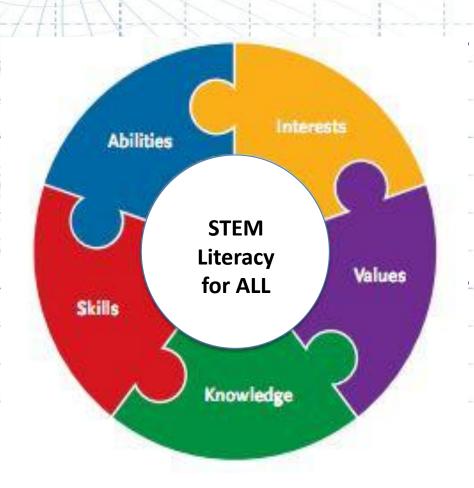
THE HEART OF STEM EDUCATION AND STEM SCHOOL DESIGN...

The Design Process

At its heart the design process is a problem solving strategy. It teaches someone how to think critically and carefully through a problem so that at the end of the process a clear, reasoned, and purposeful solution is reached.

Throughout the STEM School and STEM Instructional Program design process you will be utilizing the design process to develop a reasoned, thoughtful and strategic approach to solving to your state's problems. The product you will conceive, develop, and test will be your plan for sustainable innovation.

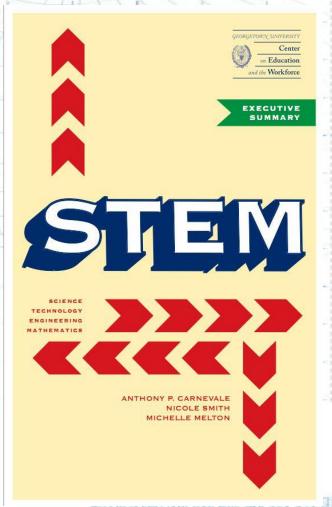
TEACHING INSTITUTE FOR EXCELLENCE IN STEM



STEM Education refers to the teaching and learning of these disciplines usually in a *trans-disciplinary fashion* to a level of rigor at least sufficient for college readiness without remediation and the "T & E" informs the "S & M".

A student's school experience with Science, Technology, Engineering, and Math (STEM) coursework has proven to be an important indicator for overall **college readiness**, **postsecondary success**, and preparation for STEM careers.

But the numbers are cause for concern. Of the 1.9 million students who enrolled in college, only 1.3 million were ready for college-level STEM work **without remediation**, and less than 280,000 intended to major in STEM-related fields.


Pipeline

- Demand for STEM skills in the labor market
- All jobs require some level of STEM competencies
- Economic competitiveness
- Innovative Workforce

Mainline

- STEM literate citizenry
- Increased rigor on Common
 Core and NAEP assessments

- Traditional STEM jobs have grown faster than job growth overall for decades, and the future promises more of the same.
- The concern for STEM shortages tends to focus on an insufficient supply of STEM workers, but the <u>deeper problem</u> is a scarcity of workers with core STEM competencies across the entire economy.
- The vast majority of high paying jobs requires a STEM competent workforce with some form of postsecondary education or training.

The attributes of a STEM educated student:

Problem-solvers—able to frame problems as puzzles, and to apply understanding and learning to novel situations (argument and evidence)

Innovators—"power to pursue independent and original investigation" (Gilman, 1898) using the design process

Inventors—recognize the needs of the world and creatively design and implement solutions

Self-reliant—able to set own agendas, develop and gain self-confidence, and work within specified time frames

Logical thinkers--using the logic offered by calculus and found in 60% of all professions world-wide; able to make connections to gain an understanding of natural phenomena

Technologically literate--understand the nature of the technology, master the skills needed and apply them appropriately

TIES
TEACHING INSTITUTE
FOR EXCELLENCE IN STEM

"Pathways to Prosperity"...An American Solution

Three Key Elements...

The first element is the development of a **broader vision of school reform** that incorporates multiple pathways to carry young people from high school to adulthood

The second is the development of a much **expanded role for employers** in supporting these new pathways.

The third is the development of a **new social compact** between society and its young people

...from the Pathways to Prosperity Project, Harvard University, February 2011

"...this is a moment of urgency and opportunity, a chance to close the gap between the current state of educational achievement and the education system we need."

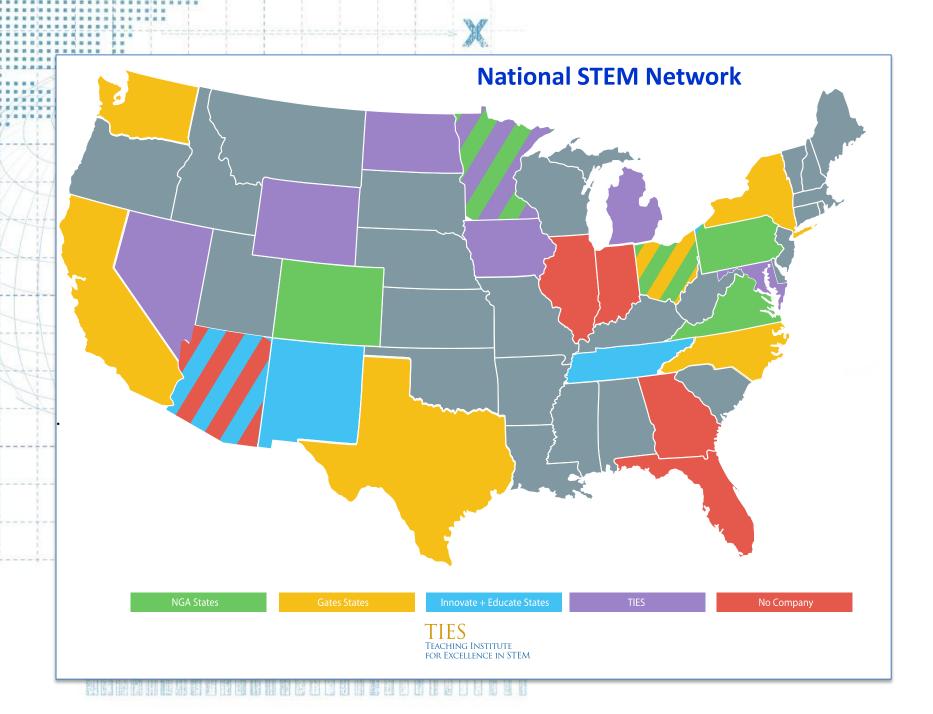
The Opportunity Equation: Carnegie Corporation of New York (2009)

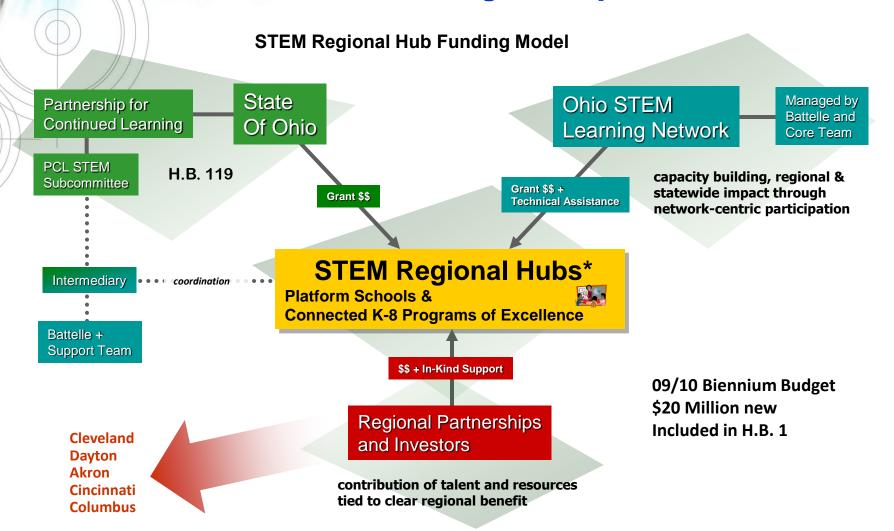
Collaboration is not a natural act...

Enlightened self-interest is!!

TIES
TEACHING INSTITUTE
FOR EXCELLENCE IN STEM

Three key elements...


- Investing in key states that can creatively apply their own intellectual and scientific, technical and corporate and financial to leverage and sustain multiple STEM approaches
- Connecting these states and other partners through active networking designed to learn, capture and distribute innovation and change behavior
- 3. Funding national advocacy through a coalition of **outstanding champions** that range from corporate executives and political leaders to Nobel Laureates



- •An evident focus on STEM content and themes, where students take at least four years of math and four years of science including pre-engineering
- •An explicit set of core STEM skills, processes, language, critical thinking, design and problem solving that is integrated and reinforced across grades and disciplines
- •An evident culture that honors STEM and inspires and helps students to pursue it while expressly integrating STEM with humanities and the arts
- •A formal relationship with local STEM companies, institutions and universities that provide both students and faculty deliberate STEM projects and internships; where they engage with real mathematics, science and engineering

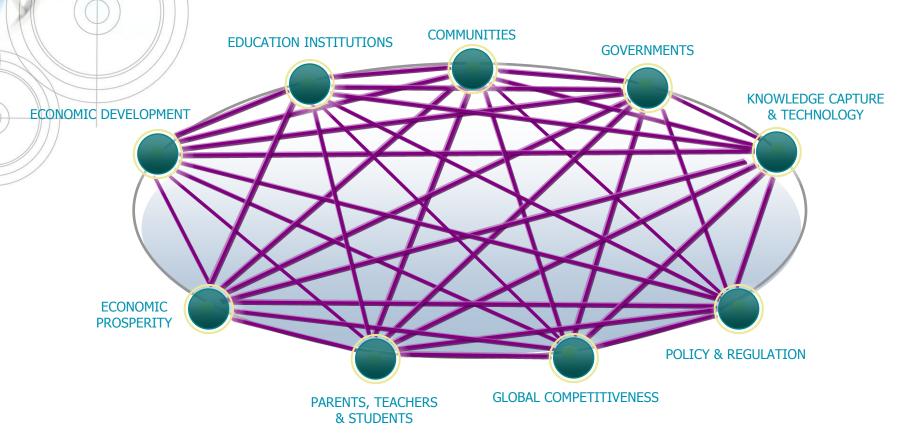


Ohio STEM Learning Network (OSLN) Alignment of State, Private and Local Design Principles and Investments

Building a Network of STEM Communities

Ready to Launch

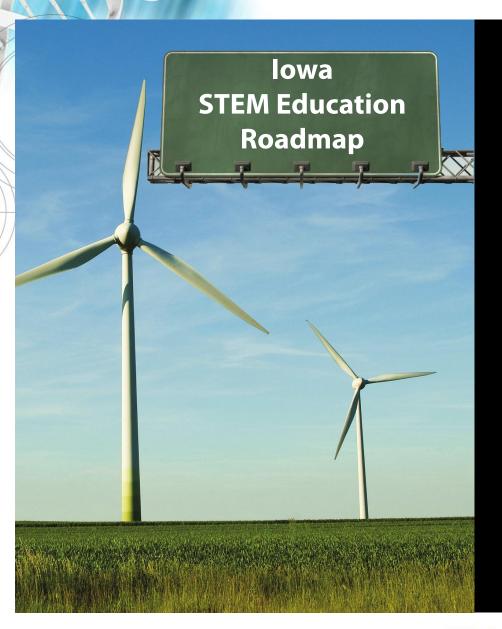
3 STEM Communities engaged in 2009



Emerging/Incubating Communities

Future STEM Communities being identified

North Carolina STEM Community Collaborative— NC STEM... Our Challenge is Ours, Collectively


By connecting communities to the state of the art programs, standards and assessments, curriculum/content, professional development, and expertise, the entire network benefits.

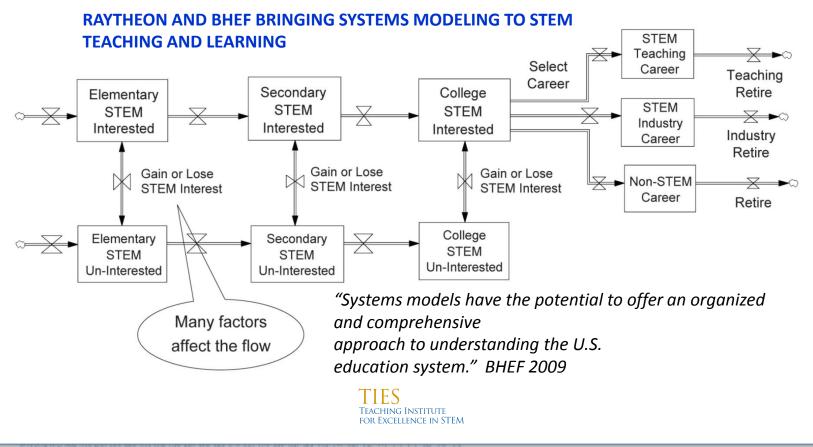
Empire State STEM Learning Network

Network design derived from progressive dialogue: A state-wide system of multi-dimensional, public/private partnerships to manage and execute strategic roadmap Objectives: Grow STEM teaching and learning capacity Collaboration with Multi-dimensional: Accelerate knowledge capture and sharing of other state and State-wide project office (s) effective policies and practices national leaders • Stimulate ongoing collaborative innovation Regional hubs Local innovation teams Connections to national resources Web-based access to knowledge **Public/private partnerships:** Business assets and the • Education (PK-20+) R network Parents · Effective policies, NGOs* programs, processes Government Research on STEM education R Value proposition and recommended actions Agile systems design approach: aligned to constituency • Concept (define the market, requirements, solution architecture) · Links to other state and Prototype (develop beta, soft launch) national initiatives Adapt (refine) Implementation (scale) *Non-government organizations

A Strategic Plan for Science, Technology, **Engineering and Mathematics** (STEM) **Education** 2011

Science, Technology, Engineering + Math

Inhuman Energy™


Columbus City Schools
Baltimore County Public
Schools
Oakland Unified School
District
Chattanooga Public Schools
Stark County Schools
Chester County Schools
...and many more!!!

Theory of Action II: SCALING AN EXPANDED ROLE FOR BUSINESS, INDUSTRY, HIGHER EDUCATION INCLUDING COMMUNITY COLLEGES AND TECHNICAL COLLEGES

Maximize

working and learning student progressing through accelerated, competency-based, flexible pathways.

Double

the number of low-income young adults who, by age 26, earn a postsecondary credential with labor market value.

Learn and Earn Design Principles

"Credits and Dollars"

Strategic Alignment

- Value equally learning and working relationships that fundamentally change markets, business models and delivery channels.
- Form a single community of practice, PK-20 inclusive of community colleges, a continuous learning labor market, Career Technical Education and identified and driven by industry partners.
- Recognize and leverage 11th/12th grade as a gateway to postsecondary education and employment.
- Form nationally portable, industry-recognized credentials as part of education pathway.
- Synchronizes colleges and employers resulting in structured, clear and flexible credentialing pathways.

Rigor

- Provide academically rigorous, college-ready/ work-ready competency-based curricula that are both scalable and sustainable.
- Drive scalable and sustainable innovation that simultaneously lower recruiting and training costs.
- Anchors in clearly defined learning competencies for acceleration and quality.

Relevant Work Experiences

- Ground all decisions in "real-time" industry driven-economic focused" data.
- Make STEHM literacy desirable and attainable for all students.
- Accelerates portable career rewards by including interim certificates/certifications that are recognized by employers with wage increases and/or promotions.
- Work experience is both "pay- and credit-worthy.

Financial & Non-Financial Support

 Coordinate resources from government and non-government agencies, education institutions and businesses to support Learn and Earn systems that overcome financial barriers that prevent college-qualified, low-income high school students from participating.

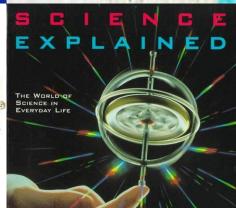
Learn & Earn Continuum Focus: Acceleration, Competency-based, & Flexibility

Theory of Action III: Scaling Innovation Through Reform of Public Education...the Creation of STEM Schools

"incubating innovative STEM instruction to scale to all schools so that STEM education is for ALL students..."

STEM SCHOOLS: CHANGING THE DNA OF STEM EDUCATION!

Technology


Academia/Industry

Single Community

Science Centers/Museums

TIES
TEACHING INSTITUTE
FOR EXCELLENCE IN STE

USA STEM Schools	FEATURES: Project-based Learning & Transdisciplinary Curriculum
Science Leadership Academy (TFI)	 Mastery/Proficiency Student-based Assessments Rubric based on (design, knowledge, application) Formative and summative Digital Portfolio PSSA / SAT (for college admission)
High Tech High (San Diego)	 Student-based Self-Assessments "Exhibition:" Culminating Presentations of Learning Journals, self-reflections Rubrics +Process analysis sheets Deadline completion check-offs ACT (for college admission)
MC ₂ STEM High School (G. E. Global)	 Digital Portfolio Mastery/Proficiency Based Student Assessments Capstone Project Rubrics Capstone "Exhibition" SAT and ACT (for college admission)
IMSA (Fermi Lab)	 Digital Portfolio Mastery/Proficiency SAT and ACT (for college admission)
LEAP Charter	Mastery/Proficiency Student-based Assessments Dubrie with formative (project) and expensely (bandomerly)

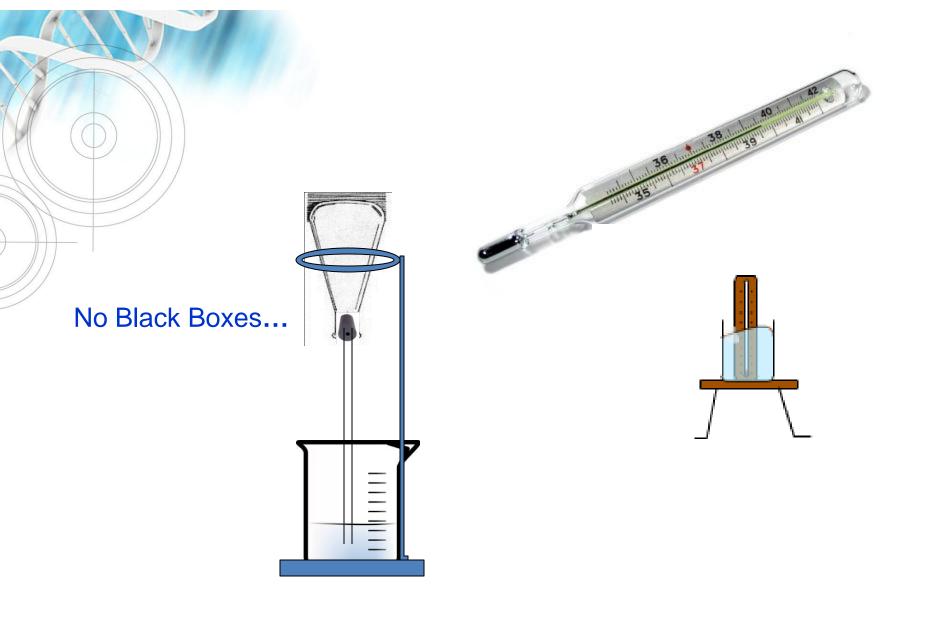
CLEVELAND METROPOLITAN SCHOOL DISTRICT

We are here this week...

We are here this week...

THE ART AND SCIENCE OF TEACHING STEM EDUCATION AND IN A STEM SCHOOL

PROTOCOLS?



"Ill be happy to give you innovative thinking. What are the guidelines?"

INGENGUITY AND CREATIVITY

Issues that students care about as a driver of STEM Education....

Transdisciplinary Project-Based Learning...STEM in Action MIT Fab Lab in Cleveland...Imagine to Make™

Phase One
DETERMING
BIG IDEAS

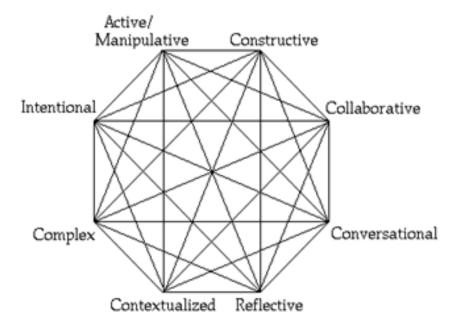
Capstone
Benchmarks Alignment
Project Based Units

Phase Two
OPERATIONALIZING
BIG IDEAS

Essential Questions Mastery Learning Goals

Phase Three
PRODUCT DESIGN
EVIDENCE OF
MASTERY

Description of Assessment Performance Criteria/Rubric


TEACHING INSTITUTE FOR EXCELLENCE IN STE

Phase Four PRODUCT DEVELOPMEMNT

Learning Activities
Sequencing of
Instruction
Choreographing

Teacher as Cognitive Scientist: Assessment for Mastery and Proficiency driving STEM

Learning STEM is....

WHAT DO SUCCESSFUL STEM SCHOOLS LOOK LIKE? HOW DO WE KNOW?

STEM SCHOOL ATTRIBUTES: THE RESEARCH PERSPECTIVE

NSF REESE GRANT UNIVERSITY OF CHICAGO, 2010

SCHOOL	Advisory	Application Process	Career Readiness Experiences	Code of Behavior and Values	Collaborative Governance	
STRUCTURES EDUCATIVE SUPPORTS	Common Planning Time	Core Course Sequence 📝	Depth Over Breadth	Early College	Family Involvement	
	Flexible Schedule	Higher Education Exposure	Individual Planning Time	Interdisciplinary Teams 🕡	Intersession	
	Mastery learning	Non-Instructional Staff	Non-Selective Enrollment	Online Management System	Open Physical Space	
	Partnerships (j)	Platform or Demonstration School Identity	Problem-Solving Projects	Range of Student Assessments	Range of Student Outcomes	
STAFF INERACTION	Regional School	Representative Population (j)	Residential Campus	STEM Instructional Leaders	STEM Space	
	School Space to Facilitate Public Engagement	Selective Enrollment	Service-Learning	Small School	Standards ①	

STEM School Attributes and Elements

Attributes & Elements of STEM Schools	Readiness Survey and Indicators	Not Demonstrated	Emerging	Proficient
STEM Literacy for all students - strategies that engage the mind and prepare students to be designers, innovators, and critical thinkers to solve complex problems				
Culture of trust, inquiry, creativity and possibility				
Policies and practices that support equity and access for all students, including under-represented populations				
Student Support Systems that meet the academic needs of youth (especially under-represented populations), e.g., direct experiences with real STEM professionals through summer bridge programs taught by STEM teachers, and field trips facilitated by community youth development organizations				

Design Blueprints: Texas STEM Initiative Blueprint and Rubric

Texas Science, Technology Engineering and Mathematics

T-STEM Academies Design Blueprint

The T-STEM Academies Design Blueprint is intended to serve as a road map for benchmarks, program requirements, and indicators to facilitate individual STEM Academy growth along the Blueprint Rubric Continuum of Developing, Implementing, Mature, and Role Model. Each Academy may differ in their areas of strength as evidenced by their self-evaluation and resulting Annual Action Plan; however, the following is a list of core program requirements that are non-negotiable.

Idaho's STEM Goals: Design Principles for Advancing the Idaho STEM Agenda

GOAL ONE

Develop and implement curriculum, programs, and policies to improve K-12 student content, knowledge, academic performance, and interest in STEM, thus creating the talent needed for a vibrant and growing economy.

GOAL TWO

Increase quantity, quality and diversity of teachers who are comfortable, prepared and able to incorporate and integrate STEM in their curriculum and instruction

GOAL THREE

Increase awareness of STEM education and its importance to the future of Idaho's economy, communities, organizations, schools and families.

GOAL FOUR

Develop, leverage and expand partnerships in STEM education by inspiring and leading collaboration among education, business, community and government.

GOAL FIVE

Promote access to STEM education opportunities to increase the diversity and success of students and employees entering STEM fields through the facilitation of effective recruitment, retention, and advancement strategies.

GOAL SIX

Develop a STEM talent base that is prepared to meet the demands of a globally competitive economy and is informed by and collaborates with IGEM

IDAHO STEM PIPELINE

Connecting students and teachers to science opportunities in Idaho www.idahostem.org

Idaho's STEM FUTURE!!

TIES
TEACHING INSTITUTE FOR EXCELLENCE IN STEM